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Abstract 
Fast Fourier Transform (FFT) algorithms are widely used in many areas of science 
and engineering. Some of the most widely known FFT algorithms are Radix-2 
algorithm, Radix-4 algorithm, Split Radix algorithm, Fast Hartley transformation 
based algorithm and Quick Fourier transform. In this paper, the first three 
algorithms listed are implemented in the sequential and MPI (message passing 
interface) parallel forms and their performances are compared. The algorithms are 
implemented in two parallel styles of algorithms such that we reduce 
communication overhead. We also see the effect of the inter-connection network on 
the performance of the algorithms. 
 
 

1. Introduction 
 
One of the most widely used technique in science and engineering is the concept of 
Fourier Transform and other algorithms based on it. In signal processing, it is primarily 
used to convert an input signal in time domain into frequency domain and vice-versa. In 
the world of digital, signals are sampled in time domain. So, we have Discrete Fourier 
Transform (DFT) in the digital world. DFT is applied on a discrete input signal and we 
get the frequency characteristics of the signal as the output. Performing inverse DFT, 
which has a mathematical form very similar to the DFT, on the frequency domain result 
gives back the signal in the time domain. This means that the signal when converted into 
frequency domain will give us the various frequency components of the input signal and 
then can be used to remove certain unwanted frequency components. This concept can be 
used in image or audio compression and filters on communication signals to name a few. 
 
Discrete Fourier Transform is a very computationally intensive process that is based on 
summation a finite series of products of input signal values and trigonometric functions. 
Its time complexity of the algorithm in O(n2).To increase the performance, several 



algorithms were proposed which can be implemented in hardware or software. These set 
of algorithms are known as Fast Fourier Transforms (FFT). The first major FFT 
algorithm was proposed by Cooley and Tukey. Many FFT algorithms were proposed with 
a time complexity of O(nlogn).  Some of them are Radix-2 algorithm, Radix-4 algorithm 
and Split Radix algorithm. In this paper, we discuss ways of parallelizing these 
algorithms to reduce the communication overhead. 
 

2. Background 
 

2.1. Discrete Fourier Transform 
 
The Discrete Fourier Transform (DFT) is a based on the sum of the product of the input 
signal values and the trigonometric functions. It deals with real numbers and is bounded. 
The DFT, X(k) of a finite length discrete signal, x(n) is computed by the equation given 
in figure 1 below. It is bounded because it assumes that the signal is periodic with a 
period equal to the length of the sequence x(n).  
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Figure 1: Mathematical form of the Discrete Fourier Transform and its inverse 
 
In computing the DFT of a finite length signal with length N, we require 4N2 
multiplications and N(4N-1) additions. This gives us a time-complexity of O(N2). This 
means that for larger values of N, the computational time increases exponentially, which 
is not desirable. This sets the stage for Fast Fourier Transforms (FFT). 
 

2.2. FFT Algorithms 
 
To make the DFT operation more practical, several FFT algorithms were proposed. The 
fundamental approach for all of them is to make use of the properties of the DFT 
operation itself. All of them reduce the computational cost of performing the DFT on the 
given input sequence. 
From the equation 1.a in figure 1, 
 

       



               

This value of Wn is referred to as the twiddle factor or phase factor. This value of twiddle 
factor being a trigonometric function over discrete points around the 4 quadrants of the 
two dimensional plane has some symmetry and periodicity properties. 
 

 
Figure2: Periodicity and symmetry property 

 
Using these properties of the twiddle factor, unnecessary computations can be eliminated. 
 
Another approach that can be used is the divide-and-conquer approach. In this approach, 
the given single dimensional input sequence of length, N, can be represented in a two-
dimensional form with M rows and L columns with N = M x L. It can be shown that DFT 
that is performed on such a representation will lead to lesser computations, N(M+L+1) 
complex additions and N(M+L-2) complex additions. Please note that this approach is 
applicable only when the value of N is composite. 

2.2.1. Radix-2 FFT algorithm 
 
This algorithm is a special case of the approaches described earlier in which N can be 
represented as a power of 2 i.e., N = 2v. This means that the number of complex additions 
and multiplications gets reduced to N(N+6)/2 and N2/2 just by using the divide-and-
conquer approach. When we also begin to use the symmetry and periodicity property of 
the twiddle factor, it can be shown that the number of complex additions and 
multiplications can be reduced to Nlog2N and (N/2)log2N respectively. Hence, from a 
O(N2) algorithm, the computational complexity has been reduced to O(NlogN). 
 
The entire process is divided into log2N stages and in each stage N/2 two-point DFTs are 
performed. The computation involving each pair of data is called a butterfly. Radix-2 
algorithm can be implemented as Decimation- in-time (M=N/2 and L=2) or Decimation-
in-frequency (M=2 and L=N/2) algorithms. Figure 3 below gives the decimation-in-
frequency form of the Radix-2 algorithm for an input sequence of length, N=8. Figure 4 
below gives the decimation-in-time form of the same. 

2.2.2. Radix-4 FFT algorithm 
 
This algorithm is similar to Radix-2 algorithm; but here, four point DFTs are performed 
instead of two point DFTs as in Radix-2 algorithm. This also means that the length of the 
input sequence, N, should be a power of 4, 4v. It can be shown that the number of 
complex multiplications and additions have been reduced to (3N/8)log2N and 
(3N/2)log2N respectively. Thus, it is more computationally efficient than Radix-2 FFT 
algorithm. 



 
 

 
 

Figure 3: 8-point Radix-2 FFT: Decimation in frequency form 
 

 
 
 

Figure 4: 8-point Radix-2 FFT: Decimation in time form 
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2.2.3. Split Radix FFT algorithm 
 
Looking at figure 4, it can be observed that all the even numbered points of the DFT can 
be performed independent to the odd numbered points. This property is used in Split 
Radix FFT algorithm. As the name suggests, part of the algorithm is computed using 
Radix-2 algorithm and other part is computed using Radix-4 algorithm. As seen earlier, 
Radix-4 algorithm is more computationally efficient than the Radix-2 algorithm; but has 
the disadvantage that length of the input sequence should be a power of 4. The Split 
Radix algorithm brings together the advantages of the two algorithms. 

2.2.4. Comparison  
 
It can be shown that of the sequential form of the three algorithms, Radix-4 is the fastest 
and Radix-2 is the slowest. Split Radix performs somewhere in the middle. For more 
literature on these, [1] is a good reference. 
 

3. MPI Parallel FFT algorithms 

3.1. Approaches to parallelization 
 
There are many forms of parallel systems available viz., shared memory multiprocessors 
and message based multi-processors. With the increasing popularity of clusters, MPI 
(message passing interface) has become a popular form of writing parallel programs for 
massively parallel multi-processors. Hence, we discuss here algorithms for MPI based 
systems.  

3.1.1. All butterflies in parallel 
This approach would mean that all butterfly computations can be performed in parallel. 
As we see in figure 3, all butterflies in a stage can be performed in parallel and then at the 
end of the stage, the results can be gathered. Now all nodes can perform computation on 
the result of the first stage in parallel and output of the second stage can be gathered 
again and so on. While this provides maximum scope for parallelism, there is a 
significant communication overhead in this process as at the end of each stage all the 
processors should communicate with each other and the system should not proceed to the 
next stage until all the output from the first stage is generated. Moreover, the 
communication pattern among the processors is also not uniform. This adds to the 
complexity of the system. Hence, this algorithm is not implemented. 

3.1.2. Scope for parallelism increases with stages 
Let us consider the decimation- in-frequency form of the length 8 Radix-2 algorithm. In 
the first stage, all the data is mingled and we have to perform a single 8-point DFT in the 
first stage. In the second stage, it visibly breaks into two separate 4-point DFTs and in the 
third stage, we have eight separate 2-point DFTs. Michael Balducci et al, in [2], have 
used an algorithm that partly resembles this and the previous algorithm in section 3.1.1. 
Figure 5 below shows us the parallel composition of this algorithm. The text in the oval is 



the elements on which computation is performed and the number below the oval is the 
processor that would perform the computation. Solid lines indicate communication. 
 

 
 
Figure 5: Parallel composition for 8-point Radix-2 FFT in Decimation in frequency form 

on a 4 processor system 
 
In the decimation- in-time form, the arrows in the above figure need to be reversed and 
the stages should be numbered from bottom-up. Please note that in this, we have more 
parallelism in the first stage and the number of divisions clearly decreases by a factor of 
two. So, this is just the inverse of decimation- in-frequency form. But the advantage of 
this form is that the result is already in the master node by the end of the last stage 
whereas in the case of decimation- in-frequency form, we need a result gathering phase 
after the last FFT stage. 
 
The disadvantage of this approach is that while only one processor will be active in the 
first stage of the decimation-in-frequency form, all the other available processors will be 
idle in the first stage. But the number of processors used will be increased in the 
subsequent stages. 

3.1.3. Truly parallel computation: “Communicate twice” algorithm 
This algorithm is applicable only to the decimation- in-frequency form. As the name 
suggests, this algorithm will reduce the communication overhead involved. In section 
3.1.2, we saw that processor 2 waits for the result of the first stage from processor 0 
before proceeding with stage 2 computations. Since processor 2 already is aware of the 
data set that it is waiting for, it could as well perform the same computation that 
processor 0 is performing and then use the data set for its stage 2 computations. In this 
approach, we need an initial broadcast of all the input data; but such a broadcast is not 
needed in the approach mentioned in 3.1.2. Figure 6 below represents the parallel 
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computations performed by the processors in various stages. It can be noted that some 
processors would be performing redundant computations as some other processors will 
also be computing the same operation on the data set. But this approach will be very 
attractive for fast processor nodes connected with a relatively higher latency 
interconnection network. 
 

 
Figure 6: Parallel communication and computational structure for 8-point DIF Radix-2 

FFT algorithm implemented as described in section 3.1.3 

3.2. Implementation 
 
The algorithms, mentioned in sections 3.1.2 and 3.1.3, have been implemented in C++ 
using Standard Template Libraries (STL) and Message Passing Interface (MPI).  
 
It can be noted form figure 5 that we divide the inputs to a stage into two sets in the case 
of Radix-2 or Split Radix algorithm and four sets in the case of Radix-4 algorithm. But 
this does not mean that this algorithm can be implemented using 2v or 4v processors only. 
It can be implemented using any number of processors. When we cannot divide the data 
elements at any stage, then the processor that was supposed to divide the data set will 
continue to perform computations on the entire data set from the previous stage. This can 
be seen in figure 7 below, which is the 3 processor version of figure 5. In this approach, 
we map out the entire communication map for each stage for all the processors before 
beginning to compute the FFT. Blocking MPI communication was used instead of non-
blocking communication as it will not make any difference in performance in this case 
and just increase the amount of memory required because of the requirements of 
MPI::COMM_WORLD.Isend() method.  
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Figure 7: Parallel composition for 8-point Radix-2 FFT in Decimation in frequency form 

on a 3 processor system 
 
For the approach in 3.1.3, we initially compute just the data elements or rather results 
expected from all the processors at the end of the last stage. The determination if a 
division should be executed in a particular stage by a processor is done on the fly by the 
FFT kernel. Computations on a division can be done in two ways i.e., the DFT operation 
can be either computed for both the upper and lower half of the division or computed for 
either the lower or the upper half of the division. This would save us some additions and 
multiplications. The results in this paper are only based on the former way of 
implementation. The latter way, which will further improve performance, can be done as 
a future work. After the last stage, we can perform a MPI::COMM_WORLD.Gatherv() to 
receive the various result from the nodes. 

4. Results 

4.1. Measurement method 
 
The main and the only criteria used here for benchmarking the algorithms is the time 
taken for computation and communication. We use MPI::COMM_WORLD.Wtime() to 
measure the wall-time. We include all computations and communication involved 
including the initial broadcast and the final result gathering phase, if applicable. The 
laying out of the communication map is also included in the calculation of the total time 
taken by the process. Thus, all overheads involved in performing a parallel computation 
are taken into account when measuring the time except the initial loading of the program 
in the processors. 
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4.2. Comparison of the two parallelizing algorithms 

 
Figure 8: Comparison of the Radix-2 algorithm implemented in 4 processor system with 
the algorithms in section 3.1.3 and section 3.1.2. We can see that the Communicate twice 

algorithm clearly outperforms the other one. 
 

 
Figure 9: Comparison of the Radix-2 algorithm implemented in 4 processor system with 
the algorithms in section 3.1.3 and section 3.1.2. We can see that the Communicate twice 

algorithm clearly outperforms the other one. Please note that when we increase the 
number of processors from 4 to 16, we need to wait for a little longer before it 

outperforms the single processor implementation. In the 4 processor system, we achieve 
this when the input sequence is of length 2048; but in a 16 processor system, we achieve 

that only when length of the input sequence is 32768. 
 



In both the above cases, it has to be noted that when the input size reaches 524288, the 
tree based algorithm described in section 3.1.2 slightly outperforms the other algorithm.  

 

4.2. Performance of Radix-2, Radi-4 and Split Radix FFT algorithms 
 
From the graphs in the previous section, we see that the Communicate twice algorithm in 
section 3.1.3 works better in the sample space than the one described in section 3.1.2. So, 
in this section, we compare the above three FFT algorithms when their parallel 
implementation is based on the “communicate twice” algorithm. The communication 
medium used was Gigabit Ethernet. The graphs indicate the speed-up that we obtain 
using an np-processor based cluster when we vary the input size. The blue horizontal line 
with dots, represent the speed-up for the single processor system which is always 1. 
 
In all the three graphs, it can be observed that for lower values of the input size, less than 
256, the single-processor implementation clocks a better time than all the multi-processor 
system. Beyond an input size of 256, the 2-processor implementations of all three 
algorithms begin to match and decrease the time taken for computation of the FFT by the 
single processor implementation. At this point, the computational and communication 
loads match the computational load of the single processor implementations. So, for 
lesser input sizes, communication became the overhead. It can also be noted that for 
different values of np, the point of cross-over is different. The higher the number of 
processors used, the higher is the minimum input size needed to make the system 
profitable when compared to the single processor implementations. This is true for all the 
three algorithms. 

 
Figure 10: Radix-2 FFT algorithm implemented using “Communicate twice” 

(section 3.1.3) algorithm 
 



 
 

Figure 11: Radix-4 FFT algorithm implemented using “Communicate twice” 
(section 3.1.3) algorithm 

 

 
 

Figure 12: Split Radix FFT algorithm implemented using “Communicate twice”  
(section 3.1.3) algorithm 

 
Please note the contrast between the performance comparisons of the parallel algorithms 
in [2] and in this paper. [2] mentions that no speed-up was achieved even when the input 
size reaches 8192. Some of the reasons could be the algorithm itself which places too 
much communication overhead or it could be the communication medium or protocols 
that was available during that time (1996). 
 



For a given value of np in each algorithm, has a sweet-spot. This sweet spot though 
slightly varies between the three algorithms; but almost falls within a certain range. The 
table 1 (below) lists the number of processors to use when given a particular input size. 
This could actually vary with different communication mediums and processor 
architecture. 
 

Input size range Number of 
processors to use 

1-256 1 
256 -16384 2 

16384 – 1.5x105 4 
1.5x105 – 1x106 8 

 
Table 1: Static heuristic to determine the number of processors to use given the input size 

in a MPI based cluster of Pentium IV machines 
 
Another interesting observation that one could make is that the speed-up obtained in 
Radix-2 algorithm is higher than the speed-up obtained on Radix-4 and Split Radix 
algorithm when increasing the number of processors. Please note that the sequential 
version of Radix-4 FFT algorithm performs better than the Split Radix and Radix-2 
algorithms. The number of stages in a Split Radix and Radix-4 implementation for an 
input of size N is log2N whereas for the Radix-4 implementation, it is log4N. Both our 
parallelizing approaches are built on the fact that parallelism increases with increasing 
number of stages and divisions. Also, the Radix-4 and Split Radix implementations use 
STL classes to dynamically compute and store the division to execute in each stage; but 
Radix-2 does not. This also cost the Radix-4 and Split Radix implementations dearly. 

4.3. Different communication medium: Myrinet Vs Gigabit Ethernet 
 
This graph below gives us a comparison between Myrinet and Gigabit Ethernet for an 
input of size 16384. It can be noted that when the communication medium improves, the 
performance of the “communicate twice” algorithm increases communication 
tremendously. The weight on the communication overhead in determining the speed-up 
reduces.  
 

5.  Conclusions 
 
Fast Fourier Transform (FFT) is used widely in many scientific, engineering and 
mathematical applications. In same cases, it is used to analyze a huge set of input data. 
Hence, parallel FFT algorithms are desirable. Parallelizing the sequential and simple FFT 
algorithms will be beneficial to control code complexity and minimize execution time of 
the process. 



 
 

Figure 13: Myrinet Vs Ethernet : 16384 point Radix-2 FFT using Communicate twice 
algorithm 

 
This paper establishes that FFT algorithms can be parallelized and we can also reduce the 
execution time unlike [2]. The ‘communicate twice’ algorithm reduces execution time 
considerably than the algorithms used in [2]. But the engineering compromise here is that 
it is not a good cluster citizen. It increases the load of the processor. So, the cumulative 
CPU cycles spent on the operation is higher than the other algorithms. With increasing 
processing power of the processors, this might turn out to be a bearable commodity. The 
static heuristic in table 1 can be used as a guide designing intelligent FFT routines that 
automatically choose the number of processors to use. 

6. Future work 
 
The “communicate twice” parallel FFT algorithms are implemented such that the 
processors execute the butterfly operation is performed on all the input s to the 
appropriate division in every stage. But that is not necessary and instead of performing 
computations to get the full butterfly, we can compute just half the butterfly (look at the 
figure 14 below) and reduce the execution time and the CPU load by half in each stage. 
This can be tried and benchmarked as well. 
 
The implementations that were presented in this paper were actually parallel 
implementations of the hugely popular and less mathematically demanding FFT 
algorithms. There also exist other parallel FFT algorithms that are based on matrices and 
Kronecker products as in [3]. It can be studied and parallel versions of the algorithm can 
be implemented and the performance can be studied. Please note that the algorithm that 
was described in section 3.1.3 uses a concept that is slightly similar to [3]; but it does not 
exploit the many parallel algorithms that are available for matrix operations. Also, [3] is a 
parallel FFT algorithm from ground up. 
 



 
 
We also saw that one of the main reasons that we cannot implement the approach in 
section 3.1.1 was because of the significant amount of and non-uniform communication 
involved in an MPI system. But this is a very good candidate to be implemented in a 
shared memory system. 
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Figure 14: Concept of full and half butterflies in action when the processor in 
consideration needs to compute only the bottom half of the four points in the final 
stage. ‘b’ shows that the above halfs are not computed in the previous stage.  




